7 resultados para Leafworm cotton

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study on the dynamics of land use in recently settled forest areas. In the course of events, tribals lost their land; the demographic structure of Attappady changed; the cropping pattern got diversified; traditional techniques of production were ruined; new crops and new techniques of cultivation came to stay; and the entire cost and return structure of production underwent radical change. Migration to Attappady is essentially a continuation of the Malabar migration process from Travancore, through, some people from Tamil Nadu also had migrated to this region earlier. The demographic structure, along with land structure, has changed in favour of the settlers within a short span of time. Lack of security of ownership has acted as a strong reason for wanton exploitation of land resources. The major influencing factors on crop choices among settlers were labour endowment, date of settlement and education. Attappady is an unique ecosystem in Kerala characterized by many interdependables. The latest hand of environmental degradation is a grave danger especially on sloppy terrains,which are under cultivation of tapioca and dry annual crops like groundnuts, cotton, grams etc. Soil erosion as a result of the unplanned cultivation of these crops has resulted in dramatic decline in soil fertility and hence low crop productivity. This calls for a watershed management approach for the sustainable development of the region. A progressive agrarian transformation is warranted to maintain the homegarden as a sustainable production system in ecological and socio-economic terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis discusses the factors which influence the productive and financial performance of the spinning mills in Kerala. The study will also help to assess the effect of ongoing reforms in the industrial sector in India. The main objective of the study is to identify and analyse the factors affecting the efficiency of the spinning mills. The unique feature of the study is that it compares the performance of private sector in relation to its public counterparts and also performance of small sector in relation to medium sector. The study is carried out with reference to the relative performance of differmills in Kerala and to identify the sources of differences in performance. The study covers twenty one spinning mills in Kerala, of which ten are in the private sector, four under NTC, three under co—operat;ive sector and four under KSTC.Measured in terms of firm-size fifteen belong to small size with a spindleage of less than 26,000 and six are in the medium size with a spindleage of 26,000 to 50,0OO.1 The period of study is 1982-83 to 1991-92. Hence, only those companies, of which data of 10 years upto 1991-92 wereavailable, are taken for study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

. The cotton mill industry is one of the important medium and large-scale industries in the State of Kerala. Due to the widespread development of the handloom industry in the State, there is an environment conducive to the growth of cotton spinning mills which produce yarn, the raw material required by the handloom industry. New spin— ing mills are being commissioned. But the performance of the existing cotton spinning and weaving mills in the State is not quite satisfactory. Hence an analysis has been carried out into the profitability and financial position of the industry in Kerala. The objective of the study is to make a financial analysis of the industry covering various aspects such as cost structure, productivity, asset structure, financial structure and working capital management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacillus smithii BTMS 11, isolated from marine sediment, produced alkaline and thermostable lipase. The enzyme was purified to homogeneity by ammonium sulfate precipitation and ion exchange chromatography which resulted in 0.51 % final yield and a 4.33 fold of purification. The purified enzyme was found to have a specific activity of 360 IU/mg protein. SDS-PAGE analyses, under non-reducing and reducing conditions, yielded a single band of 45 kDa indicating the single polypeptide nature of the enzyme and zymogram analysis using methylumbelliferyl butyrate as substrate confirmed the lipolytic activity of the protein band. The enzyme was found to have 50 C and pH 8.0 as optimum conditions for maximal activity. However, the enzyme was active over wide range of temperatures (30–80 C) and pH (7.0–10.0). Effect of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on lipase activity was studied to determine the novel characteristics of the enzyme. More than 90 % of the enzyme activity was observed even after 3 h of incubation in the presence of commercial detergents Surf, Sunlight, Ariel, Henko, Tide and Ujala indicating the detergent compatibility of B. smithii lipase. The enzyme was also found to be efficient in stain removal from cotton cloths. Further it was observed that the enzyme could catalyse ester synthesis between fatty acids of varying carbon chain lengths and methanol with high preference for medium to long chain fatty acids showing 70 % of esterification. Results of the study indicated scope for application of this marine bacterial lipase in various industries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kerala, God’s own country is blessed with immense natural resources. It’s high time that the state’s natural resources being utilized effectively. While sustainable development is the need of the hour, we have to take lead in initiating activities that would minimize the exploitation of our natural resources resulting in their effective utilization. This paper narrates an overview of innovative building materials especially using natural fibres available in Kerala and discusses the feasibility of utilising such fibres in the context of sustainable building materials in Kerala. The paper also discusses how these materials can be effectively utilized to reduce the huge investment in the construction industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.